Food vacuole plasmepsins are processed at a conserved site by an acidic convertase activity in Plasmodium falciparum.

نویسندگان

  • Ritu Banerjee
  • Susan E Francis
  • Daniel E Goldberg
چکیده

Intraerythrocytic Plasmodium falciparum digests vast amounts of hemoglobin within an acidic food vacuole (FV). Four homologous aspartic proteases participate in hemoglobin degradation within the FV. Plasmepsin (PM) I and II are thought to initiate degradation of the native hemoglobin molecule. PM IV and histo-aspartic protease (HAP) act on denatured globin further downstream in the pathway. PM I and II have been shown to be synthesized as zymogens and activated by proteolytic removal of a propiece. In this study, we have determined that the proteolytic processing of FV plasmepsins occurs immediately after a conserved Leu-Gly dipeptidyl motif with uniform kinetics and pH and inhibitor sensitivities. We have developed a cell-free in vitro processing assay that generates correctly processed plasmepsins. Our data suggest that proplasmepsin processing is not autocatalytic, but rather is mediated by a separate processing enzyme. This convertase requires acidic conditions and is blocked only by the calpain inhibitors, suggesting that it may be an atypical calpain-like protease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasmodium falciparum falcilysin: an unprocessed food vacuole enzyme.

Five hundred million infections and nearly two million deaths each year are attributed to the protozoan Plasmodium falciparum, a causative agent of human malaria. With the increasing prevalence of drug resistant strains, there is an urgent need to identify new drug targets. Examination of the parasite’s unique metabolic pathways, such as hemoglobin degradation, provides candidates for chemother...

متن کامل

Four plasmepsins are active in the Plasmodium falciparum food vacuole, including a protease with an active-site histidine.

Hemoglobin degradation is a metabolic process that is central to the growth and maturation of the malaria parasite Plasmodium falciparum. Two aspartic proteases that initiate degradation, plasmepsins (PMs) I and II, have been identified and extensively characterized. Eight additional PM genes are present in the P. falciparum genome. To better understand the enzymology of hemoglobin degradation,...

متن کامل

Identification and characterization of falcilysin, a metallopeptidase involved in hemoglobin catabolism within the malaria parasite Plasmodium falciparum.

The malaria parasite Plasmodium falciparum degrades hemoglobin in its acidic food vacuole for use as a major nutrient source. A novel metallopeptidase activity, falcilysin, was purified from food vacuoles and characterized. Falcilysin appears to function downstream of the aspartic proteases plasmepsins I and II and the cysteine protease falcipain in the hemoglobin proteolytic pathway. It is una...

متن کامل

The role of Plasmodium falciparum food vacuole plasmepsins.

Plasmepsins (PMs) are thought to have an important function in hemoglobin degradation in the malarial parasite Plasmodium falciparum and have generated interest as antimalarial drug targets. Four paralogous plasmepsins reside in the food vacuole of P. falciparum. Targeted gene disruption by double crossover homologous recombination has been employed to study food vacuole plasmepsin function in ...

متن کامل

Gene disruption confirms a critical role for the cysteine protease falcipain-2 in hemoglobin hydrolysis by Plasmodium falciparum.

Erythrocytic malaria parasites degrade hemoglobin in an acidic food vacuole to acquire free amino acids and maintain parasite homeostasis. Hemoglobin hydrolysis appears to be a cooperative process requiring cysteine proteases (falcipains) and aspartic proteases (plasmepsins), but the specific roles of different enzymes in this process are unknown. We previously showed that falcipain-2 is a majo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and biochemical parasitology

دوره 129 2  شماره 

صفحات  -

تاریخ انتشار 2003